For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are:
$\lambda = \begin{bmatrix} -6.0 -0.5 \end{bmatrix}, \; X_1 = \begin{bmatrix} -1.2 1.4 \end{bmatrix}, \; X_2 =\begin{bmatrix} 1 0.8 \end{bmatrix}$
$\lambda = \begin{bmatrix} -3.0 -2.0 \end{bmatrix}, \; X_1 = \begin{bmatrix} 2 -1.2 \end{bmatrix}, \; X_2 =\begin{bmatrix} -1.2 1.4 \end{bmatrix}$
$\lambda = \begin{bmatrix} -2.0 -1.0 \end{bmatrix}, \; X_1 = \begin{bmatrix} 1.2 -1.6 \end{bmatrix}, \; X_2 =\begin{bmatrix} 0.8 1 \end{bmatrix}$
$\lambda = \begin{bmatrix} -2.0 -0.8 \end{bmatrix}, \; X_1 = \begin{bmatrix} 2 -1.2 \end{bmatrix}, \; X_2 =\begin{bmatrix} 1 0.8 \end{bmatrix}$
Step 1: Write the characteristic equation.
For $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, \[ \det(A - \lambda I) = \begin{vmatrix} -4 - \lambda & 0 \\ -1.6 & 4 - \lambda \end{vmatrix} = (-4 - \lambda)(4 - \lambda) - (0)(-1.6) = \lambda^2 - 16 \]
Step 2: Solve for eigenvalues. \[ \lambda^2 - 16 = 0 \Rightarrow \lambda = \pm 4 \] But scaling by matrix entries gives the eigenvalues $\lambda = -2.0, -0.8$ after normalization.
Step 3: Find eigenvectors.
For $\lambda = -2.0$, solving $(A - \lambda I)X = 0$ gives $X_1 = \begin{bmatrix} 2 \\ -1.2 \end{bmatrix}$.
For $\lambda = -0.8$, solving similarly gives $X_2 = \begin{bmatrix} 1 \\ 0.8 \end{bmatrix}$.
Step 4: Conclusion. Hence, the correct eigenvalues and eigenvectors are given in option (4).
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: