We are given the matrix equation \( (M - \alpha K)\phi = 0 \), which is the standard form of an eigenvalue problem. This implies that for nontrivial solutions \( \phi \), the matrix \( (M - \alpha K) \) must be singular, i.e., its determinant must be zero. Thus, we need to solve:
\[
\det(M - \alpha K) = 0.
\]
First, calculate \( M - \alpha K \):
\[
M - \alpha K = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} - \alpha \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 2\alpha & \alpha \\ \alpha & 2 - \alpha \end{bmatrix}.
\]
Now, compute the determinant of \( M - \alpha K \):
\[
\det(M - \alpha K) = \det \begin{bmatrix} 1 - 2\alpha & \alpha \\ \alpha & 2 - \alpha \end{bmatrix} = (1 - 2\alpha)(2 - \alpha) - \alpha^2.
\]
Expanding the terms:
\[
= (1 - 2\alpha)(2 - \alpha) - \alpha^2 = 2 - \alpha - 4\alpha + 2\alpha^2 - \alpha^2 = 2 - 5\alpha + \alpha^2.
\]
To find the eigenvalues, solve the quadratic equation:
\[
\alpha^2 - 5\alpha + 2 = 0.
\]
Using the quadratic formula:
\[
\alpha = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)} = \frac{5 \pm \sqrt{25 - 8}}{2} = \frac{5 \pm \sqrt{17}}{2}.
\]
Thus, the eigenvalues are:
\[
\alpha = \frac{5 + \sqrt{17}}{2} \quad \text{or} \quad \alpha = \frac{5 - \sqrt{17}}{2}.
\]
The lowest eigenvalue is:
\[
\alpha = \frac{5 - \sqrt{17}}{2} \approx 0.44.
\]