Step 1: Given \( M^2 = 0 \).
This implies that all eigenvalues of \( M \) are zero.
Step 2: Find eigenvalues of \( (M + \alpha I). \)
If \( \lambda \) is an eigenvalue of \( M \), then eigenvalue of \( (M + \alpha I) \) is \( \lambda + \alpha. \)
Since \( \lambda = 0 \), eigenvalue is \( \alpha. \)
Step 3: Similarly, for \( (M - \alpha I). \)
Eigenvalue \( = \lambda - \alpha = -\alpha. \)
However, since \( M \neq 0 \) but nilpotent, its only eigenvalue is 0; so both \( M + \alpha I \) and \( M - \alpha I \) have single eigenvalues \( \alpha \) and \(-\alpha\) respectively.
Hence, option (A) correctly captures \( \alpha \) as the only eigenvalue of both, considering consistent shift.
Final Answer: (A).
For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are: