Step 1: Use property of eigenvalues.
If \( \lambda \) is an eigenvalue of \( M \), then \( \lambda^5 \) is an eigenvalue of \( M^5 \). Hence, for eigenvalue relation \( M^5 = aI + bM \), we get: \[ \lambda^5 = a + b\lambda. \]
Step 2: Substitute eigenvalues.
For \( \lambda = 2 \): \( 2^5 = a + 2b \Rightarrow 32 = a + 2b. \) For \( \lambda = -1 \): \( (-1)^5 = a - b \Rightarrow -1 = a - b. \)
Step 3: Solve for \( a, b. \)
Subtract equations: \[ (32 - (-1)) = (a + 2b) - (a - b) \Rightarrow 33 = 3b \Rightarrow b = 11. \] Substitute in \( a - b = -1 \Rightarrow a = 10. \)
Final Answer: \( a = 10, b = 11. \)
For the matrix, $A = \begin{bmatrix} -4 & 0 \\ -1.6 & 4 \end{bmatrix}$, the eigenvalues ($\lambda$) and eigenvectors ($X$) respectively are: