Let M be a positive real number and let u, v: \(\R^2\rightarrow\R\) be continuous functions satisfying \(\sqrt{u(x,y)^2+v(x,y)^2}\ge M\sqrt{x^2+y^2}\ for\ all\ (x,y)\isin\R^2.\)
Let F: \(\R^2\rightarrow\R^2\) be given by
F(x, y) = (u(x, y), v(x, y)) for (x, y)\(\isin\R^2\).
Then which of the following is/are true?