To determine the relationship between the wavelengths \( \lambda_e, \lambda_p, \lambda_d \) associated with an electron, a proton, and a deuteron all moving at the same speed, we utilize the de Broglie wavelength formula:
$$ \lambda = \frac{h}{mv} $$
where \( \lambda \) is the wavelength, \( h \) is Planck's constant, \( m \) is the mass of the particle, and \( v \) is the velocity. Given that the speed \( v \) is the same for all three particles, the wavelengths are inversely proportional to their masses:
1. \( \lambda_e = \frac{h}{m_e v} \)
2. \( \lambda_p = \frac{h}{m_p v} \)
3. \( \lambda_d = \frac{h}{m_d v} \)
Where \( m_e, m_p, \) and \( m_d \) are the masses of the electron, proton, and deuteron respectively. Given:
- The mass of an electron \( m_e \) is the smallest.
- The mass of a proton \( m_p \) is larger than the mass of an electron.
- The mass of a deuteron \( m_d \) (approximately twice the mass of a proton) is the largest.
Therefore, since the masses follow \( m_e < m_p < m_d \), the wavelengths satisfy \( \lambda_e > \lambda_p > \lambda_d \). Hence, the correct relation between the wavelengths is:
\( \lambda_e > \lambda_p > \lambda_d \)
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
मालवा में ऋतु परिवर्तन के प्रभाव स्वरूप पहले कौन-से बदलाव होते थे ? वर्तमान में उसमें क्या अंतर आया है ? इस अंतर के कारणों की पड़ताल कीजिए ।
ग्रामीण परिवेश में जन्मे, पले-बढ़े व्यक्ति का आगे का जीवन भले ही शहर में बीते पर उसकी स्मृतियों का गाँव सदैव मोहक और आकर्षक बना रहता है । – ‘बिस्कोहर की माटी’ पाठ के आधार पर सोदाहरण लिखिए ।