The given parabola is:
\[ 9x^2 + 12x + 4 = -18(y - 1). \]
Rewriting:
\[ (3x + 2)^2 = -18(y - 1). \]
Equation of a line passing through \( P(0, 1) \) is:
\[ y = mx + 1. \]
Substituting \( y = mx + 1 \) into the parabola:
\[ (3x + 2)^2 = -18(mx). \]
Expanding:
\[ 9x^2 + (12 + 18m)x + 4 = 0. \]
For the line to be tangent to the parabola:
\[ \Delta = 0. \]
Using the discriminant condition:
The equation simplifies as:
\[ (12 + 18m)^2 - 4(9)(4) = 0. \]
Simplify:
\[ 144 + 432m + 324m^2 - 144 = 0. \]
\[ 36m^2 + 108m + 36 = 0. \]
Simplify:
\[ m^2 + 3m + 1 = 0. \]
Solving the quadratic equation:
\[ m = \frac{-3 \pm \sqrt{3^2 - 4(1)(1)}}{2(1)} = \frac{-3 \pm \sqrt{5}}{2}. \]
This gives the slopes \(m_1 = \frac{-3 + \sqrt{5}}{2}\) and \(m_2 = \frac{-3 - \sqrt{5}}{2}\).
For \(\triangle PQR\), the triangle is isosceles with base \(\overline{QR}\). Using the tangent property, the slope of \(\overline{QR}\) can be derived using:
\[ \text{Slope of QR} = \tan \left( \frac{\pi}{2} + \frac{\theta}{2} \right). \]
Using symmetry, calculate \(\theta\):
\[ \theta = \tan^{-1} \left( \frac{4}{3} \right). \]
Then:
\[ m_1 = -\cot\left(\frac{\theta}{2}\right), \quad m_2 = \tan\left(\frac{\theta}{2}\right). \]
Finally, calculate:
\[ m_1 = -\frac{1}{2}, \quad m_2 = 2. \]
\[ 16(m_1^2 + m_2^2) = 16 \left( \left(-\frac{1}{2}\right)^2 + 2^2 \right). \]
\[ = 16 \left( \frac{1}{4} + 4 \right). \]
\[ = 16 \times \frac{17}{4} = 68. \]