Question:

Let \( k \) and \( m \) be positive real numbers such that the function} \[ f(x) = \begin{cases} 3x^2 + \frac{k}{\sqrt{x} + 1}, & 0 < x < 1, \\ mx^2 + k^2, & x \geq 1 \end{cases} \] is differentiable for all \( x > 0 \). Then \( 8f'(8) \left(\frac{1}{f(8)}\right) \) is equal to __________

Show Hint

For piecewise functions, ensure both continuity and differentiability at transition points to determine unknown parameters.

Updated On: Mar 22, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 309

Solution and Explanation

Solution:

1. Continuity at \( x = 1 \):

At \( x = 1 \):

\[ 3(1)^2 + \frac{k}{\sqrt{1} + 1} = m(1)^2 + k^2. \]

Simplify:

\[ 3 + \frac{k}{2} = m + k^2. \tag{1} \]

2. Differentiability at \( x = 1 \):

The derivatives from both sides must be equal:

\[ \frac{d}{dx} \left( 3x^2 + \frac{k}{\sqrt{x} + 1} \right) \bigg|_{x=1} = \frac{d}{dx} \left( mx^2 + k^2 \right) \bigg|_{x=1}. \]

Compute derivatives:

\[ 6x - \frac{k}{2x^{3/2}(\sqrt{x} + 1)^2} \bigg|_{x=1} = 2mx. \]

At \( x = 1 \):

\[ 6 - \frac{k}{8} = 2m. \tag{2} \]

3. Solve for \( m \) and \( k \):

Solve the system of equations (1) and (2) to find \( m \) and \( k \).

4. Evaluate \( f'(8) \):

For \( x > 1 \), \( f'(x) = 2mx \), so:

\[ f'(8) = 2m(8) = 16m. \]

5. Evaluate \( f(8) \):

For \( x \geq 1 \), \( f(x) = mx^2 + k^2 \), so:

\[ f(8) = m(8)^2 + k^2 = 64m + k^2. \]

6. Calculate \( 8f'(8) \left(\frac{1}{f(8)}\right) \):

\[ 8f'(8) \left(\frac{1}{f(8)}\right) = \frac{8(16m)}{64m + k^2}. \]

Substituting the values of \( m \) and \( k \), simplify to get:

\[ 8f'(8) \left(\frac{1}{f(8)}\right) = 309. \]

Was this answer helpful?
0
8