The given integral is:
\( \int \sqrt{\frac{x+7}{x}} \, dx \)
Step 1: Substitution
Let \( x = t^2 \), so:
\( dx = 2t \, dt \)
Substitute into the integral:
\( \int \sqrt{\frac{x+7}{x}} \, dx = 2 \int \sqrt{\frac{t^2+7}{t^2}} t \, dt \)
Simplify:
\( 2 \int \sqrt{t^2 + 7} \, dt = 2 \int (t + \sqrt{7}) \, dt \)
Integrate:
\( I(t) = 2 \left[ \frac{t}{2} \sqrt{t^2 + 7} + \frac{7}{2} \ln |t + \sqrt{t^2 + 7}| \right] + C \)
Simplify:
\( I(t) = t\sqrt{t^2 + 7} + 7 \ln |t + \sqrt{t^2 + 7}| + C \)
Substitute \( t = \sqrt{x} \) back:
\( I(x) = \sqrt{x} \sqrt{x+7} + 7 \ln |\sqrt{x} + \sqrt{x+7}| + C \)
Step 2: Finding the constant \( C \)
Given \( I(9) = 12 + 7 \ln 7 \):
\( I(9) = \sqrt{9} \sqrt{9+7} + 7 \ln |\sqrt{9} + \sqrt{9+7}| + C \)
Simplify:
\( 12 + 7 \ln 7 = 12 + 7 \ln (3+4) + C \)
\( C = 0 \)
Thus:
\( I(x) = \sqrt{x} \sqrt{x+7} + 7 \ln |\sqrt{x} + \sqrt{x+7}| \)
Step 3: Finding \( I(1) \) and \( \alpha \)
Substitute \( x=1 \):
\( I(1) = \sqrt{1} \sqrt{1+7} + 7 \ln |\sqrt{1} + \sqrt{1+7}| \)
\( I(1) = \sqrt{8} + 7\ln(1 + \sqrt{8}) \)
Let \( \alpha = \sqrt{8} \), so:
\( \alpha^4 = (\sqrt{8})^4 = 8^2 = 64 \)
Final Answer:
\( \alpha^4 = 64 \)