Step 1: Rotation matrix for a vector.
The rotation of a vector \(\vec{V} = \hat{i} + \hat{j}\) by an angle \(\theta\) about the z-axis can be described using the rotation matrix:
\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}.
\]
Step 2: Apply the rotation to the vector.
Here, \(\theta = 135^\circ\), so the rotation matrix becomes:
\[
\begin{bmatrix}
\cos 135^\circ & -\sin 135^\circ \\
\sin 135^\circ & \cos 135^\circ
\end{bmatrix}
= \begin{bmatrix}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{bmatrix}.
\]
Multiplying the rotation matrix by the vector \(\hat{i} + \hat{j}\), we get:
\[
\begin{bmatrix}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{bmatrix}
\begin{bmatrix}
1
1
\end{bmatrix}
= \begin{bmatrix}
-\sqrt{2} \\
0
\end{bmatrix}.
\]
Thus, the rotated vector is \(-\sqrt{2} \hat{i}\), which corresponds to option (D).