Step 1: Identify the formula for the Fourier coefficient \(a_n\).
For a function \(f(x)\) defined on \([-\pi, \pi]\), the Fourier series is \( \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) \). The coefficient of \( \cos(nx) \) is \(a_n\), given by:
\[ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx \]
We need to find \(a_3\).
Step 2: Set up the integral for \(a_n\) with \(g(x)=x^2\).
Since \(g(x)=x^2\) is an even function and \(\cos(nx)\) is an even function, their product is also even. We can simplify the integral:
\[ a_n = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) dx \]
Step 3: Evaluate the integral using integration by parts.
Using the formula \( \int u dv = uv - \int v du \). Let \(u=x^2\) and \(dv = \cos(nx)dx\).
\[ a_n = \frac{2}{\pi} \left[ x^2 \frac{\sin(nx)}{n} \right]_{0}^{\pi} - \frac{2}{\pi} \int_{0}^{\pi} 2x \frac{\sin(nx)}{n} dx \]
The first term is zero. For the second integral, use parts again with \(u=2x\) and \(dv=\frac{\sin(nx)}{n}dx\).
\[ a_n = -\frac{4}{n\pi} \left( \left[ x \left(-\frac{\cos(nx)}{n}\right) \right]_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{\cos(nx)}{n}\right) dx \right) \]
\[ a_n = -\frac{4}{n\pi} \left( -\frac{\pi\cos(n\pi)}{n} - 0 + \left[ \frac{\sin(nx)}{n^2} \right]_{0}^{\pi} \right) \]
The sine term evaluates to zero.
\[ a_n = -\frac{4}{n\pi} \left( -\frac{\pi\cos(n\pi)}{n} \right) = \frac{4\cos(n\pi)}{n^2} \]
Step 4: Substitute \(n=3\) to find \(a_3\).
Since \( \cos(n\pi) = (-1)^n \), we have \( a_n = \frac{4(-1)^n}{n^2} \).
For \(n=3\):
\[ a_3 = \frac{4(-1)^3}{3^2} = \frac{-4}{9} \]
Consider a system represented by the block diagram shown below. Which of the following signal flow graphs represent(s) this system? Choose the correct option(s).
Match the LIST-I (Spectroscopy) with LIST-II (Application)
LIST-I | LIST-II |
---|---|
A. Visible light spectroscopy | III. Identification on the basis of color |
B. Fluorescence spectroscopy | IV. Identification on the basis of fluorophore present |
C. FTIR spectroscopy | I. Identification on the basis of absorption in infrared region |
D. Mass Spectroscopy | II. Identification on the basis of m/z ion |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Forensic Psychiatry | III. Behavioural pattern of criminal |
B. Forensic Engineering | IV. Origin of metallic fracture |
C. Forensic Odontology | I. Bite marks analysis |
D. Computer Forensics | II. Information derived from digital devices |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Calvin Goddard | II. Forensic Ballistics |
B. Karl Landsteiner | III. Blood Grouping |
C. Albert Osborn | IV. Document examination |
D. Mathieu Orfila | I. Forensic Toxicology |
Match the LIST-I (Evidence, etc.) with LIST-II (Example, Construction etc.)
LIST-I | LIST-II |
---|---|
A. Biological evidence | IV. Blood |
B. Latent print evidence | III. Fingerprints |
C. Trace evidence | II. Soil |
D. Digital evidence | I. Cell phone records |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Ridges | III. The raised portion of the friction skin of the fingers |
B. Type Lines | I. Two most inner ridges which start parallel, diverge and surround or tend to surround the pattern area |
C. Delta | IV. The ridge characteristics nearest to the point of divergence of type lines |
D. Enclosure | II. A single ridge bifurcates and reunites to enclose some space |