We are given:
\[
G(x) = \begin{bmatrix}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
This is a rotation matrix about the z-axis in 3D. The composition of two such rotations is equivalent to rotation by the sum of the angles.
That is:
\[
G(x)G(y) = G(x + y)
\]
So, if \( x + y = 0 \), then:
\[
G(x)G(y) = G(0)
\]
Now compute \( G(0) \):
\[
G(0) = \begin{bmatrix}
\cos 0 & -\sin 0 & 0 \\
\sin 0 & \cos 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
= I_3
\]
Hence, \( G(x)G(y) = I \), the identity matrix.