To solve the problem, we need to determine the value of \( g(3) \) given the function \( f(x) \) and the conditions for continuity and differentiability at specific points.
Step 1: Understand the function \( f(x) \) and conditions.
Step 2: Find conditions for continuity at \( x = 0 \).
Step 3: Evaluate \(\lim_{x \to 0^+} \left( \frac{1 + x}{2 + x} \right)^{\frac{1}{x}}\).
Simplifying and applying the condition of continuity: \(g(0) = 1.\)
Step 4: Use differentiability condition at \( x = 1 \).
Complex form of derivative will yield \(f'(x) = \ldots\). Evaluating \( x = 1 \), and substition using continuity condition:
Step 5: Substituting using options for correctness:
Thus the value of \( g(3) \) is \(\boxed{\log_e \left( \frac{4}{9e^{1/3}} \right)}\).
Let \( g(x) = ax + b \).
Now function \( f(x) \) is continuous at \( x = 0 \).
\[ \therefore \lim_{x \to 0} f(x) = f(0) \] \[ \lim_{x \to 0} \left( 1 + x \over 2 + x \right)^{1 \over x} = b \] \[ \Rightarrow 0 = b \] \[ \therefore g(x) = ax \]
Now, for \( x > 0 \),
\[ f'(x) = \frac{1}{x} \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \frac{1}{(2 + x)^2} + \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \ln \left( 1 + x \over 2 + x \right) \cdot \frac{1}{x^2} \] \[ f'(1) = \frac{1}{9} - \frac{2}{3} \ln \left( \frac{2}{3} \right) \]
And \( f(-1) = g(-1) = -a \)
\[ a = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{9} \] \[ g(3) = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{3} \] \[ = \ln \left( \frac{4}{9 e^{-1/3}} \right) \]
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 