To solve the problem, we need to determine the value of \( g(3) \) given the function \( f(x) \) and the conditions for continuity and differentiability at specific points.
Step 1: Understand the function \( f(x) \) and conditions.
Step 2: Find conditions for continuity at \( x = 0 \).
Step 3: Evaluate \(\lim_{x \to 0^+} \left( \frac{1 + x}{2 + x} \right)^{\frac{1}{x}}\).
Simplifying and applying the condition of continuity: \(g(0) = 1.\)
Step 4: Use differentiability condition at \( x = 1 \).
Complex form of derivative will yield \(f'(x) = \ldots\). Evaluating \( x = 1 \), and substition using continuity condition:
Step 5: Substituting using options for correctness:
Thus the value of \( g(3) \) is \(\boxed{\log_e \left( \frac{4}{9e^{1/3}} \right)}\).
Let \( g(x) = ax + b \).
Now function \( f(x) \) is continuous at \( x = 0 \).
\[ \therefore \lim_{x \to 0} f(x) = f(0) \] \[ \lim_{x \to 0} \left( 1 + x \over 2 + x \right)^{1 \over x} = b \] \[ \Rightarrow 0 = b \] \[ \therefore g(x) = ax \]
Now, for \( x > 0 \),
\[ f'(x) = \frac{1}{x} \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \frac{1}{(2 + x)^2} + \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \ln \left( 1 + x \over 2 + x \right) \cdot \frac{1}{x^2} \] \[ f'(1) = \frac{1}{9} - \frac{2}{3} \ln \left( \frac{2}{3} \right) \]
And \( f(-1) = g(-1) = -a \)
\[ a = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{9} \] \[ g(3) = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{3} \] \[ = \ln \left( \frac{4}{9 e^{-1/3}} \right) \]
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero.
In the light of the above statements, choose the most appropriate answer from the options given below: