1. Critical Points: - To find critical points, compute partial derivatives: \[ \frac{\partial f}{\partial x} = 8x^3, \quad \frac{\partial f}{\partial y} = -6y. \] - Setting these derivatives to zero: \[ 8x^3 = 0 \quad \Rightarrow \quad x = 0, \quad -6y = 0 \quad \Rightarrow \quad y = 0. \] - Thus, the only critical point is \((0, 0)\).
2. Second Partial Derivatives: - Compute second partial derivatives: \[ f_{xx} = 24x^2, \quad f_{yy} = -6, \quad f_{xy} = f_{yx} = 0. \] 3. Hessian Determinant: - The Hessian determinant is: \[ H = f_{xx} f_{yy} - (f_{xy})^2 = (24x^2)(-6) - 0 = -144x^2. \] 4. Analyze the Critical Point: - At \((0, 0)\), \( H = 0 \), and \( f_{xx} = 0 \). - Since \( f_{xx} \) changes sign for different values of \( x \), \((0, 0)\) is a saddle point.
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100Ο cm3/s. The rate at which the height of the sugar inside the tank is increasing is:
If \(f(x) = \begin{cases} x^2 + 3x + a, & x \leq 1 bx + 2, & x>1 \end{cases}\), \(x \in \mathbb{R}\), is everywhere differentiable, then
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: