Let f :X\(\to\) Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y∈ Y, fog1(y) = IY (y) = fog2 (y). Use one-one ness of f).
Let f : X → Y be an invertible function. Also, suppose f has two inverses (say ).
Then, for all y ∈Y, we have: fog1 (y)=Iy (y)=fog2 (y)
=>f(g1 (y))=f(g2 (y))
g1 (y)=g2 (y) [f is invertible =>f is one-one
=>g1 = g2 [g is one-one].
Hence, f has a unique inverse.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
During the festival season, a mela was organized by the Resident Welfare Association at a park near the society. The main attraction of the mela was a huge swing, which traced the path of a parabola given by the equation:\[ x^2 = y \quad \text{or} \quad f(x) = x^2 \]