Question:

Let $f \left( x\right) = \alpha\left( x\right)\beta\left( x\right) \gamma \left( x\right)$ for all real x, where $\alpha\left(x\right), \beta\left(x\right)$ and $\gamma \left( x\right)$ are differentiable functions of x. If $f ' \left(2\right) = 18 f \left(2\right),\alpha' \left(2\right) = 3\alpha\left(2\right), \beta' \left(2\right) = -4\beta\left(2\right)$ and $\gamma'\left(2\right) = k\gamma \left(2\right)$ , then the value of k is

Updated On: Jul 6, 2022
  • 14
  • 16
  • 19
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We have, $f \left( x\right) = \alpha\left( x\right)\beta\left( x\right) \gamma \left( x\right)$ , for all real x $\Rightarrow f' \left( x\right) = \alpha'\left( x\right)\beta\left( x\right) \gamma \left( x\right) + \alpha\left( x\right)\beta'\left( x\right) \gamma \left( x\right) +\alpha\left( x\right)\beta\left( x\right) \gamma'\left( x\right)$ $\Rightarrow f' \left(2\right) = \alpha' \left(2\right)\beta\left(2\right) \gamma \left(2\right) + \alpha\left(2\right)\beta'\left(2\right)g \left(2\right)+a\left( 2\right)\beta\left(2\right) \gamma'\left(2\right)$ $18 f \left(2\right) = 3\alpha\left( 2\right)\beta\left(2\right) \gamma \left(2\right) - 4\alpha\left(2\right)\beta\left( 2\right) \gamma \left(2\right)+ k \alpha\left(2\right)\beta\left( 2\right) \gamma \left(2\right)$ [$\because f'\left( 2\right) =18 f \left(2\right),\alpha'\left( 2\right) = 3\alpha \left(2\right) ,\beta'\left(2\right)= -4\beta\left(2\right)$ and $\gamma'\left(2\right) = k\gamma \left(2\right)$] $\Rightarrow 18 f \left(2\right) = \left(-1+ k \right)\alpha\left( 2\right)\beta\left( 2\right) \gamma \left(2\right)$ $= \left(k -1\right) f \left( 2\right)$ $\left[\because f \left(2\right) = \alpha\left(2\right)\beta\left(2\right) \gamma \left(2\right)\right]$ $\Rightarrow\quad k -1 = 18$ $\therefore\quad k = 19$
Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives