Let \(f(x)=x+log_{e}x−xlog_{e}x,\text{ }x∈(0,∞)\).
List-I | List-II | ||
P | The capacitance between S1 and S4, with S2 and S3 not connected, is | I | \(3C_0\) |
Q | The capacitance between S1 and S4, with S2 shorted to S3, is | II | \(\frac{C_0}{2}\) |
R | The capacitance between S1 and S3, with S2 shorted to S4, is | III | \(\frac{C_0}{3}\) |
S | The capacitance between S1 and S2, with S3 shorted to S1, and S2 shorted to S4, is | IV | \(2\frac{C_0}{3}\) |
\[2C_0\] |
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives