Step 1. Given \( f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3) \). Substitute \( f'(1) = -5 \), \( f''(2) = 2 \), \( f'''(3) = 6 \).
Step 2. Calculate \( f'(x) \):
\( f'(x) = 3x^2 + 2x f'(1) + f''(2) \)
Step 3. Evaluate \( f'(10) \):
\( f'(10) = 202 \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)