Let \( f(x) = x^3 - \frac{9}{2}x^2 + 6x - 2 \) be a function defined on the closed interval [0, 3]. Then, the global maximum value of \( f(x) \) is _______
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.