To find the maximum and minimum values of \( f(x) \):
Take the derivative \( f'(x) \) and find the critical points.
Evaluate \( f(x) \) at critical points and endpoints \( x = -4, -3, -2, -1, 1, 2, 3, 4 \).
The maximum value \( M = 392 \) and the minimum value \( m = -216 \).
The value of \( M - m \) is:
\[ M - m = 392 - (-216) = 608. \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).