Let \(f(x)=\frac{sinx+cosx-\sqrt2}{sinx-cosx},x∈[0.\pi]-\left[\frac{\pi}{4}\right]. Then f\left(\frac{7\pi}{12}\right)f^n\left(\frac{7\pi}{12}\right)\)is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)