Step 1: Write the required expression
We need: \[ h(x) = \frac{f(x)}{g(x)}. \] For \(x \neq 1,-1\), \[ h(x) = \frac{\dfrac{x^2+1}{x^2-1}}{\dfrac{x+1}{x-1}}. \]
Step 2: Simplify
\[ h(x) = \frac{x^2+1}{x^2-1} \cdot \frac{x-1}{x+1}. \] Since \(x^2-1 = (x-1)(x+1)\), \[ h(x) = \frac{x^2+1}{(x+1)(x-1)} \cdot \frac{x-1}{x+1} = \frac{x^2+1}{(x+1)^2}. \]
Step 3: Check special values
Step 4: Inequality form
\[ h(x) = \frac{x^2+1}{(x+1)^2}. \] Compare numerator and denominator: \[ (x^2+1) - (x^2+2x+1) = -2x. \] So \[ h(x) = 1 - \frac{2x}{(x+1)^2}. \]
Step 5: Find minimum
We analyze the function. Using calculus (derivative test), the minimum occurs at \(x=1\). At this point, \[ h(1) = \frac{1}{3}. \] Thus, \[ \min h(x) = \frac{1}{3}. \]
\[ \boxed{\tfrac{1}{3}} \]
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Match the following airlines with the countries where they are headquartered.
| Airlines | Countries |
|---|---|
| 1. AirAsia | A. Singapore |
| 2. AZAL | B. South Korea |
| 3. Jeju Air | C. Azerbaijan |
| 4. Indigo | D. India |
| 5. Tigerair | E. Malaysia |
Match the following authors with their respective works.
| Authors | Books |
|---|---|
| 1. Andy Weir | A. Dune |
| 2. Cixin Liu | B. The Time Machine |
| 3. Stephen Hawking | C. The Brief History of Time |
| 4. HG Wells | D. The Martian |
| 5. Frank Herbert | E. The Three Body Problem |