Step 1: Write the required expression
We need: \[ h(x) = \frac{f(x)}{g(x)}. \] For \(x \neq 1,-1\), \[ h(x) = \frac{\dfrac{x^2+1}{x^2-1}}{\dfrac{x+1}{x-1}}. \]
Step 2: Simplify
\[ h(x) = \frac{x^2+1}{x^2-1} \cdot \frac{x-1}{x+1}. \] Since \(x^2-1 = (x-1)(x+1)\), \[ h(x) = \frac{x^2+1}{(x+1)(x-1)} \cdot \frac{x-1}{x+1} = \frac{x^2+1}{(x+1)^2}. \]
Step 3: Check special values
Step 4: Inequality form
\[ h(x) = \frac{x^2+1}{(x+1)^2}. \] Compare numerator and denominator: \[ (x^2+1) - (x^2+2x+1) = -2x. \] So \[ h(x) = 1 - \frac{2x}{(x+1)^2}. \]
Step 5: Find minimum
We analyze the function. Using calculus (derivative test), the minimum occurs at \(x=1\). At this point, \[ h(1) = \frac{1}{3}. \] Thus, \[ \min h(x) = \frac{1}{3}. \]
\[ \boxed{\tfrac{1}{3}} \]
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |