Question:

Let \(f(x)= \frac{x^2+1}{x^2-1} \) if \(x \neq 1,-1,\) and \(1\) \(x=1,-1\). Let \(g(x)= \frac{x+1}{x-1} \) if \(x \neq 1\) and \(3\) if \(x=1\).What is the minimum possible values of \( \frac{f(x)}{g(x)} \)?

Updated On: Aug 9, 2024
  • \( \frac{1}{2} \)
  • -1
  • \( \frac{1}{4} \)
  • \( \frac{1}{3} \)
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is option (D):\( \frac{1}{3} \)
Was this answer helpful?
0
0

Top Questions on Algebra

View More Questions

Questions Asked in XAT exam

View More Questions