For the function to be differentiable at $x = \frac{\pi}{4}$, it must be continuous and have matching derivatives at $x = \frac{\pi}{4}$ from both sides.
Step 1: Continuity at } $x = \frac{\pi}{4}$
The function must be continuous at $x = \frac{\pi}{4}$.
Thus, the left-hand limit at $x = \frac{\pi}{4}$ should be equal to the right-hand limit at $x = \frac{\pi}{4}$.
For $x \leq \frac{\pi}{4}$, $f(x) = \tan(x)$, so: \[ f\left(\frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] For $\frac{\pi}{4} < x < \frac{\pi}{2}$, $f(x) = ax + b$. Substituting $x = \frac{\pi}{4}$: \[ f\left(\frac{\pi}{4}\right) = a\left(\frac{\pi}{4}\right) + b \] For continuity, these must be equal: \[ a\left(\frac{\pi}{4}\right) + b = 1 \] Thus, we get the equation: \[ \frac{a\pi}{4} + b = 1 \quad \text{(Equation 1)} \] \textbf{Step 2: Differentiability at } $x = \frac{\pi}{4}$ For the function to be differentiable at $x = \frac{\pi}{4}$, the left-hand derivative should equal the right-hand derivative. For $x \leq \frac{\pi}{4}$, $f(x) = \tan(x)$, so: \[ f'(x) = \sec^2(x) \] At $x = \frac{\pi}{4}$: \[ f'\left(\frac{\pi}{4}\right) = \sec^2\left(\frac{\pi}{4}\right) = 2 \] For $\frac{\pi}{4} < x < \frac{\pi}{2}$, $f(x) = ax + b$, so: \[ f'(x) = a \] For differentiability, we require: \[ a = 2 \] So, $a = 2$.
Step 3: Solving for } $b$ Substitute $a = 2$ into Equation 1: \[ \frac{2\pi}{4} + b = 1 \quad \Rightarrow \quad \frac{\pi}{2} + b = 1 \quad \Rightarrow \quad b = 1 - \frac{\pi}{2} \] Thus, $b = \frac{2 - \pi}{2}$.
The correct option is (A) : \(2,\frac{2-\pi}{2}\)