We are given the equation:
\[
y = \cos x \times \sin y
\]
To differentiate implicitly, apply the product rule and the chain rule:
\[
\frac{d}{dx}(y) = \frac{d}{dx}(\cos x \times \sin y)
\]
\[
\frac{dy}{dx} = \frac{d}{dx}(\cos x) \times \sin y + \cos x \times \frac{d}{dx}(\sin y)
\]
Now, differentiate each term:
\[
\frac{dy}{dx} = -\sin x \times \sin y + \cos x \times \cos y \times \frac{dy}{dx}
\]
Rearrange to isolate \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} - \cos x \times \cos y \times \frac{dy}{dx} = -\sin x \times \sin y
\]
Factor out \( \frac{dy}{dx} \):
\[
\left(1 - \cos x \times \cos y \right) \frac{dy}{dx} = -\sin x \times \sin y
\]
Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{-\sin x \times \sin y}{1 - \cos x \times \cos y}
\]
Thus, the answer is \( \cos x \times \cos y \).