>
Exams
>
Mathematics
>
Logarithmic Differentiation
>
if y ln x 2 1 then find frac dy dx at x 1
Question:
If $ y = \ln(x^2 + 1) $, then find $ \frac{dy
{dx} $ at $ x = 1 $.
Show Hint
When differentiating a logarithmic function, use the chain rule: $ \frac{d}{dx}[\ln(u)] = \frac{1}{u} \cdot \frac{du}{dx} $.
BITSAT - 2025
BITSAT
Updated On:
Jan 13, 2026
$ \frac{1}{2} $
$ \frac{1}{3} $
$ 1 $
$ \frac{2}{3} $
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Differentiate $ y = \ln(x^2 + 1) $.
The function is: $$ y = \ln(x^2 + 1). $$ Using the chain rule, the derivative is: $$ \frac{dy}{dx} = \frac{d}{dx} \left[ \ln(x^2 + 1) \right] = \frac{1}{x^2 + 1} \cdot \frac{d}{dx}(x^2 + 1). $$ Compute $ \frac{d}{dx}(x^2 + 1) $: $$ \frac{d}{dx}(x^2 + 1) = 2x. $$ Substitute this back: $$ \frac{dy}{dx} = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}. $$
Step 2: Evaluate $ \frac{dy
{dx} $ at $ x = 1 $.}
Substitute $ x = 1 $ into the derivative: $$ \frac{dy}{dx} \bigg|_{x=1} = \frac{2(1)}{1^2 + 1} = \frac{2}{1 + 1} = \frac{2}{2} = 1. $$
Conclusion:
The value of $ \frac{dy}{dx} $ at $ x = 1 $ is: $$ \boxed{\text{C) } 1} $$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Logarithmic Differentiation
If $ f(x) = e^{2x} \sin x $, find $ f'(x) $.
BITSAT - 2025
Mathematics
Logarithmic Differentiation
View Solution
Find the derivative of
\[ \frac{d}{dx} \left( \log x^{100} \right). \]
Bihar Board XII - 2025
Mathematics
Logarithmic Differentiation
View Solution
Find the derivative of
\[ \frac{d}{dx} \left( \log_3 x \cdot \log_x 3 \right). \]
Bihar Board XII - 2025
Mathematics
Logarithmic Differentiation
View Solution
Evaluate the derivative of
$ y = \cos x \times \sin y, \quad \frac{dy}{dx} \text{ at } \left( \frac{\pi}{6}, \frac{\pi}{5} \right) $
KEAM - 2025
Mathematics
Logarithmic Differentiation
View Solution
Find $ \frac{dy}{dx} $ for the equation:
$ y = \cos x \times \sin y $
KEAM - 2025
Mathematics
Logarithmic Differentiation
View Solution
View More Questions
Questions Asked in BITSAT exam
What is the dot product of the vectors \( \mathbf{a} = (2, 3, 1) \) and \( \mathbf{b} = (1, -1, 4) \)?
BITSAT - 2025
Vector Algebra
View Solution
Find the determinant of the matrix \( A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \).
BITSAT - 2025
Matrices
View Solution
The area enclosed between the curve \(y = \log_e(x + e)\) and the coordinate axes is:
BITSAT - 2025
Fundamental Theorem of Calculus
View Solution
If $ \tan \theta + \cot \theta = 4 $, then find the value of $ \tan^3 \theta + \cot^3 \theta $.
BITSAT - 2025
Trigonometric Identities
View Solution
Evaluate the sum:
$$ \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} $$
BITSAT - 2025
Fundamental Theorem of Calculus
View Solution
View More Questions