Continuity at $x=1$ implies $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x)$
So $a(1)^2 + b = \dfrac{1}{|1|} = 1$
Similarly, at $x = -1$, $a(1)^2 + b = 1$
From these, $a + b = 1$
Also, differentiability conditions or further limits yield $a = \dfrac{3}{2}$, $b = -\dfrac{1}{2}$