Given, \(f(x)=\tan ^{-1} x\)
\(\Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}}\)
\(\Rightarrow f^{\prime \prime}(x)=-\frac{1}{\left(1+x^{2}\right)^{2}}(2 x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}}\)
\(\because f^{\prime}(x)+f^{\prime \prime}(x)=0\)
\(\therefore \frac{1}{1+x^{2}}-\frac{2 x}{\left(1+x^{2}\right)^{2}}=0\)
\(\Rightarrow \frac{\left(1+x^{2}\right)-2 x}{\left(1+x^{2}\right)^{2}}=0\)
\(\Rightarrow (1-x)^{2}=0 \Rightarrow x=1\)
So, the correct answer is (B): +1
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \).
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
A function is said to be continuous at a point x = a, if
limx→a
f(x) Exists, and
limx→a
f(x) = f(a)
It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is undefined or does not exist, then we say that the function is discontinuous.
Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions: