\(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\)
The correct option is(D): \(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\).
\(f(x) = (x - 1) (x - 2) (x - 5)\)
\(f(x) =\) \(\int\limits^{{x}}_{{0}}\) \(f(t) dt,x > 0\)
\(F'\left(x\right)=f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-5\right), x>0\)
clearly F(x) has local minimum at x = 1,5
\(F(x)\) has local maximum at \(x = 2\)
\(f\left(x\right)=x^{3}-8x^{2}+17x-10\)
\(\Rightarrow F\left(x\right)=\)\(\int\limits^{{x}}_{{0}}\)\(\left(t^{3}-8t^{2}+17t-10\right)dt\)
\(F\left(x\right)=\frac{x^{4}}{4}-\frac{8x^{3}}{3}+\frac{17x^{2}}{2}-10x\)
from the graph of \(y = F(x)\), clearly \(F\left(x\right)\ne0 \forall x\,\in \left(0.5\right)\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as: