\(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\)
The correct option is(D): \(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\).
\(f(x) = (x - 1) (x - 2) (x - 5)\)
\(f(x) =\) \(\int\limits^{{x}}_{{0}}\) \(f(t) dt,x > 0\)
\(F'\left(x\right)=f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-5\right), x>0\)
clearly F(x) has local minimum at x = 1,5
\(F(x)\) has local maximum at \(x = 2\)
\(f\left(x\right)=x^{3}-8x^{2}+17x-10\)
\(\Rightarrow F\left(x\right)=\)\(\int\limits^{{x}}_{{0}}\)\(\left(t^{3}-8t^{2}+17t-10\right)dt\)
\(F\left(x\right)=\frac{x^{4}}{4}-\frac{8x^{3}}{3}+\frac{17x^{2}}{2}-10x\)
from the graph of \(y = F(x)\), clearly \(F\left(x\right)\ne0 \forall x\,\in \left(0.5\right)\)
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: