\(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\)
The correct option is(D): \(F\left(x\right) \ne\) 0 for all \(x \in \left(0,5\right)\).
\(f(x) = (x - 1) (x - 2) (x - 5)\)
\(f(x) =\) \(\int\limits^{{x}}_{{0}}\) \(f(t) dt,x > 0\)
\(F'\left(x\right)=f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-5\right), x>0\)
clearly F(x) has local minimum at x = 1,5
\(F(x)\) has local maximum at \(x = 2\)
\(f\left(x\right)=x^{3}-8x^{2}+17x-10\)
\(\Rightarrow F\left(x\right)=\)\(\int\limits^{{x}}_{{0}}\)\(\left(t^{3}-8t^{2}+17t-10\right)dt\)
\(F\left(x\right)=\frac{x^{4}}{4}-\frac{8x^{3}}{3}+\frac{17x^{2}}{2}-10x\)
from the graph of \(y = F(x)\), clearly \(F\left(x\right)\ne0 \forall x\,\in \left(0.5\right)\)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: