The given function is:
\( f(x) = \frac{x^2 + 2x + 1}{x^2 + 1} \)
We can rewrite it as:
\( f(x) = \frac{(x + 1)^2}{x^2 + 1} = 1 + \frac{2x}{x^2 + 1} \)
The function has the form:
\( f(x) = 1 + \frac{2x}{x^2 + 1} \)
By differentiating \( f(x) \), we get:
\( f'(x) = \frac{(x^2 + 1) \cdot 2 - 2x \cdot 2x}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2} \)
Thus, \( f(x) \) is one-one in \( [1, \infty) \) but not in \( (-\infty, \infty) \).
The graph of the function confirms that \( f(x) \) is one-one in \( [1, \infty) \) and not in \( (-\infty, \infty) \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: