Let \( f : \mathbb{R} \to \mathbb{R} \) be a differentiable function with \( \lim_{x \to \infty} f(x) = \infty \) and \(\lim_{x \to \infty} f'(x) = 2. \) Then \[ \lim_{x \to \infty} \left( 1 + \frac{f(x)}{x^2} \right)^x \] equals ..............
Step 1: Asymptotic form of \(f(x)\)
Since \(f'(x)\to 2\), by standard results on asymptotic behavior,
\[f(x)=2x+o(x)\quad \text{as } x\to\infty.\]
Hence,
\[\frac{f(x)}{x^2} \frac{2}{x}+o!\left(\frac{1}{x}\right).\]
Step 2: Evaluate the limit
\[\left(1+\frac{f(x)}{x^2}\right)^x \left(1+\frac{2}{x}+o!\left(\frac{1}{x}\right)\right)^x.\]
Using the standard limit
\[\lim_{x\to\infty}\left(1+\frac{a}{x}\right)^x = e^{a},\]
we obtain
\[\lim_{x\to\infty}\left(1+\frac{f(x)}{x^2}\right)^x e^2.\]
Final answer
\[\boxed{e^2 \approx 7.389}\]
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :