Let \( f : \mathbb{R} \to \mathbb{R} \) be a differentiable function with \( \lim_{x \to \infty} f(x) = \infty \) and \(\lim_{x \to \infty} f'(x) = 2. \) Then \[ \lim_{x \to \infty} \left( 1 + \frac{f(x)}{x^2} \right)^x \] equals ..............
Step 1: Asymptotic form of \(f(x)\)
Since \(f'(x)\to 2\), by standard results on asymptotic behavior,
\[f(x)=2x+o(x)\quad \text{as } x\to\infty.\]
Hence,
\[\frac{f(x)}{x^2} \frac{2}{x}+o!\left(\frac{1}{x}\right).\]
Step 2: Evaluate the limit
\[\left(1+\frac{f(x)}{x^2}\right)^x \left(1+\frac{2}{x}+o!\left(\frac{1}{x}\right)\right)^x.\]
Using the standard limit
\[\lim_{x\to\infty}\left(1+\frac{a}{x}\right)^x = e^{a},\]
we obtain
\[\lim_{x\to\infty}\left(1+\frac{f(x)}{x^2}\right)^x e^2.\]
Final answer
\[\boxed{e^2 \approx 7.389}\]