To find \( \frac{\partial f}{\partial x} \) at \( (0, 0) \), we first check if the function is continuous at \( (0, 0) \). The function is defined as:
\[
f(x, y) = \frac{x^2 y}{x^2 + y^2} \text{ for } (x, y) \neq (0, 0).
\]
At \( (0, 0) \), we need to check if the limit of \( f(x, y) \) as \( (x, y) \to (0, 0) \) exists:
\[
\lim_{(x, y) \to (0, 0)} \frac{x^2 y}{x^2 + y^2} = 0.
\]
Thus, the function is continuous at \( (0, 0) \).
Next, we compute the partial derivative \( \frac{\partial f}{\partial x} \) at \( (0, 0) \):
\[
\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h}.
\]
Since \( f(h, 0) = 0 \) for all \( h \), we have:
\[
\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{0 - 0}{h} = 1.
\]
Thus, \( \frac{\partial f}{\partial x} = 1 \) at \( (0, 0) \).