We are given the limit expression:
\[ \lim_{a \to \infty} \frac{a(a + 1)}{2} \tan^{-1} \left( \frac{1}{a} \right) + a^2 - 2 \ln a. \]
Step 1: Simplify the \(\tan^{-1}\) term Using the expansion:
\[ \tan^{-1} \left( \frac{1}{a} \right) \approx \frac{1}{a} - \frac{1}{3a^3} \quad \text{as } a \to \infty. \]
Substitute this approximation:
\[ \frac{a(a + 1)}{2} \tan^{-1} \left( \frac{1}{a} \right) \approx \frac{a(a + 1)}{2} \left( \frac{1}{a} - \frac{1}{3a^3} \right). \]
As \(a \to \infty\), the dominant term is:
\[ \frac{(a + 1)}{2} - \frac{(a + 1)}{6a^2}. \]
As \(a \to \infty\), the dominant term is:
\[ \frac{(a + 1)}{2} \to \frac{a}{2}. \]
Step 2: Rewrite the full limit expression The given expression becomes:
\[ \lim_{a \to \infty} \left( \frac{a}{2} + a^2 - 2 \ln a \right). \]
Step 3: Identify \(f(x)\) From the problem:
\[ f(x) = \frac{1}{2} \left( (1 + x) \tan^{-1}(x) + 1 - 2x^2 \ln(x) \right). \]
Compute \(f'(x)\):
\[ f'(x) = \frac{1}{2} \left( \frac{1 + x}{1 + x^2} + \tan^{-1}(x) + 4x \ln(x) + 2x \right). \]
Substitute \(x = 1\):
\[ f'(1) = \frac{1}{2} \left( \frac{1 + 1}{1 + 1} + \frac{\pi}{4} + 4(1) \ln(1) + 2(1) \right). \]
Simplify:
\[ f'(1) = \frac{1}{2} \left( 1 + \frac{\pi}{4} + 2 \right). \]
Thus:
\[ f'(1) = \frac{5}{2} + \frac{\pi}{8}. \]