Step 1: Identify the piecewise function and integration limits: \[ f(x) = \begin{cases} x & \text{if } x \leq 1 \\ -x+2 & \text{if } x > 1 \end{cases} \] We need to integrate from 0 to 2.
Step 2: Split the integral at the point where the function definition changes (x=1): \[ \int_{0}^{2} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} (-x + 2) dx \]
Step 3: Compute the first integral (0 to 1): \[ \int_{0}^{1} x dx = \left. \frac{x^2}{2} \right|_{0}^{1} = \frac{1}{2} - 0 = \frac{1}{2} \]
Step 4: Compute the second integral (1 to 2): \[ \int_{1}^{2} (-x + 2) dx = \left. \left( -\frac{x^2}{2} + 2x \right) \right|_{1}^{2} \] \[ = \left( -2 + 4 \right) - \left( -\frac{1}{2} + 2 \right) = 2 - \frac{3}{2} = \frac{1}{2} \]
Step 5: Add both results: \[ \frac{1}{2} + \frac{1}{2} = 1 \]
Conclusion: The value of the integral is \(\boxed{B}\) (1).
The function \( f(x) \) is defined piecewise.
We need to split the integral into two parts based on the definition of \( f(x) \):
\[ \int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx \]
For \( 0 \leq x \leq 1 \), \( f(x) = x \), so
\[ \int_0^1 f(x) \, dx = \int_0^1 x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2} \]
For \( 1 < x \leq 2 \), \( f(x) = -x + 2 \), so
\[ \int_1^2 f(x) \, dx = \int_1^2 (-x + 2) \, dx = \left[ -\frac{x^2}{2} + 2x \right]_1^2 = \left( -\frac{4}{2} + 4 \right) - \left( -\frac{1}{2} + 2 \right) = 2 - \frac{3}{2} = \frac{1}{2} \]
Therefore,
\[ \int_0^2 f(x) \, dx = \frac{1}{2} + \frac{1}{2} = 1 \]
Final Answer: The final answer is \( {1} \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.