To solve the problem, we need to determine the linear map \( L: \mathbb{R}^3 \to \mathbb{R} \) such that:
\(\lim_{(x,y,z)\rightarrow(0,0,0)}\frac{f(1+x,1+y,1+z)-f(1,1,1)-L(x,y,z)}{\sqrt{x^2+y^2+z^2}}=0.\)
First, evaluate \( f(1,1,1) \):
As given, \( f(x,y,z)=x^3+y^3+z^3 \), so:
\(f(1,1,1)=1^3+1^3+1^3=3.\)
Now calculate \( f(1+x,1+y,1+z) \):
\((1+x)^3+(1+y)^3+(1+z)^3 = 1+3x+3x^2+x^3 + 1+3y+3y^2+y^3 + 1+3z+3z^2+z^3. \)
This simplifies using linear terms:
\( = 3 + 3x + 3y + 3z + \text{(higher-order terms)}. \)
Subtracting \( f(1,1,1) \), we have:
\( f(1+x,1+y,1+z)-f(1,1,1) = 3x + 3y + 3z + \text{(higher-order terms)}. \)
By the definition of the linear map \( L(x,y,z) \), drop higher-order terms. Therefore:
\(L(x,y,z) = 3x + 3y + 3z.\)
Next, find \( L(1,2,4) \):
Substitute \( x=1 \), \( y=2 \), \( z=4 \) into \( L(x,y,z) = 3x + 3y + 3z \):
\(L(1,2,4) = 3(1) + 3(2) + 3(4) = 3 + 6 + 12 = 21.\)
Finally, check if \( 21 \) falls within the expected range, which is \( (20.99,21.01) \).
Yes, \( 21 \) is within the range.
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.