Step 1: Parity of the functions
\[
g(x)=f(a+x)+f(a-x)
\]
Clearly,
\[
g(-x)=f(a-x)+f(a+x)=g(x)
\]
Hence, \(g(x)\) is an even function.
Step 2: First derivative
\[
g'(x)=f'(a+x)-f'(a-x)
\]
Then,
\[
g'(-x)=-g'(x)
\]
So \(g'(x)\) is an odd function.
Thus,
\[
g'(0)=0
\]
Therefore, the minimum number of roots of \(g'(x)=0\) in \((-a,a)\) is:
\[
m=1
\]
Step 3: Second derivative
\[
g''(x)=f''(a+x)+f''(a-x)
\]
Hence,
\[
g''(-x)=g''(x)
\]
So \(g''(x)\) is an even function.
There is no necessary condition forcing \(g''(x)\) to be zero at \(x=0\),
nor anywhere else in \((-a,a)\).
Thus, the minimum number of roots of \(g''(x)=0\) in \((-a,a)\) is:
\[
n=0
\]
Step 4: Compute \(m+n\)
\[
m+n=1+0=1
\]
\[
\boxed{1}
\]