Let f : \(\R^2 → \R\) be defined as follows : \(f(x,y)=\begin{cases} \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\ 0 & \text{if } (x,y)=(0,0) \end{cases}\) Then
\(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t}\) exists and equals \(\frac{1}{2}\)
\(\frac{∂f}{∂x}|_{(0,0)}\) exists and equals 0
\(\frac{∂f}{∂y}|_{(0,0)}\) exists and equals 0
\(\lim\limits_{t \rightarrow 0}\frac{f(t,2t)-f(0,0)}{t}\) exists and equals \(\frac{1}{3}\)
Hide Solution
Verified By Collegedunia
The Correct Option isA, B, C
Solution and Explanation
The correct option is (A) : \(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t}\) exists and equals \(\frac{1}{2}\), (B) : \(\frac{∂f}{∂x}|_{(0,0)}\) exists and equals 0 and (C) : \(\frac{∂f}{∂y}|_{(0,0)}\) exists and equals 0.
Was this answer helpful?
0
0
Top Questions on Functions of Two or Three Real Variables