Question:

Let f : \(\R^2 → \R\) be defined as follows :
\(f(x,y)=\begin{cases}    \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\     0  & \text{if } (x,y)=(0,0) \end{cases}\)
Then

Updated On: Nov 17, 2025
  • \(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t}\) exists and equals \(\frac{1}{2}\)
  • \(\frac{∂f}{∂x}|_{(0,0)}\) exists and equals 0
  • \(\frac{∂f}{∂y}|_{(0,0)}\) exists and equals 0
  • \(\lim\limits_{t \rightarrow 0}\frac{f(t,2t)-f(0,0)}{t}\) exists and equals \(\frac{1}{3}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, C

Solution and Explanation

To determine the behavior of the function \( f(x, y) \) at the origin and evaluate the limits and derivatives, we need to carefully analyze the given conditions. The function is defined as:

\(f(x,y)=\begin{cases} \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\ 0 & \text{if } (x,y)=(0,0) \end{cases}\)

  1. We first verify \(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t}\):

    Plug in \( x = t \) and \( y = t \), then:

    \( f(t, t) = \frac{t^4 \cdot t^3}{t^6 + t^6} = \frac{t^7}{2t^6} = \frac{t}{2} \)

    Thus, \(\frac{f(t,t)-f(0,0)}{t} = \frac{\frac{t}{2} - 0}{t} = \frac{1}{2}\).

    Taking the limit as \( t \rightarrow 0 \), we find:

    \(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t} = \frac{1}{2}\).

  2. Derivatives at \((0,0)\):
    • Partial derivative of \(f\) with respect to \(x\) at \((0,0)\):

      The partial derivative is defined as:

      \( \frac{∂f}{∂x}|_{(0,0)} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} \)

      When \( y = 0 \), \( f(h,0) = 0 \), so:

      \( \frac{∂f}{∂x}|_{(0,0)} = \lim_{h \to 0} \frac{0 - 0}{h} = 0 \)

    • Partial derivative of \(f\) with respect to \(y\) at \((0,0)\):

      The partial derivative is defined as:

      \( \frac{∂f}{∂y}|_{(0,0)} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} \)

      When \( x = 0 \), \( f(0,k) = 0 \), so:

      \( \frac{∂f}{∂y}|_{(0,0)} = \lim_{k \to 0} \frac{0 - 0}{k} = 0 \)

  3. Finally, verify \(\lim\limits_{t \rightarrow 0}\frac{f(t,2t)-f(0,0)}{t}\):

    Set \(x = t\) and \(y = 2t\), then:

    \( f(t, 2t) = \frac{t^4 \cdot (2t)^3}{t^6 + (2t)^6} = \frac{8t^7}{t^6 + 64t^6} = \frac{8t}{65} \)

    Then, \(\frac{f(t,2t)-f(0,0)}{t} = \frac{\frac{8t}{65} - 0}{t} = \frac{8}{65}\).

From the above analysis, the correct options are:

  • \(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t}\) exists and equals \(\frac{1}{2}\)
  • \(\frac{∂f}{∂x}|_{(0,0)}\) exists and equals 0
  • \(\frac{∂f}{∂y}|_{(0,0)}\) exists and equals 0
Was this answer helpful?
0
0

Top Questions on Functions of Two or Three Real Variables

View More Questions

Questions Asked in IIT JAM MA exam

View More Questions