To determine the behavior of the function \( f(x, y) \) at the origin and evaluate the limits and derivatives, we need to carefully analyze the given conditions. The function is defined as:
\(f(x,y)=\begin{cases} \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\ 0 & \text{if } (x,y)=(0,0) \end{cases}\)
Plug in \( x = t \) and \( y = t \), then:
\( f(t, t) = \frac{t^4 \cdot t^3}{t^6 + t^6} = \frac{t^7}{2t^6} = \frac{t}{2} \)
Thus, \(\frac{f(t,t)-f(0,0)}{t} = \frac{\frac{t}{2} - 0}{t} = \frac{1}{2}\).
Taking the limit as \( t \rightarrow 0 \), we find:
\(\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t} = \frac{1}{2}\).
The partial derivative is defined as:
\( \frac{∂f}{∂x}|_{(0,0)} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} \)
When \( y = 0 \), \( f(h,0) = 0 \), so:
\( \frac{∂f}{∂x}|_{(0,0)} = \lim_{h \to 0} \frac{0 - 0}{h} = 0 \)
The partial derivative is defined as:
\( \frac{∂f}{∂y}|_{(0,0)} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} \)
When \( x = 0 \), \( f(0,k) = 0 \), so:
\( \frac{∂f}{∂y}|_{(0,0)} = \lim_{k \to 0} \frac{0 - 0}{k} = 0 \)
Set \(x = t\) and \(y = 2t\), then:
\( f(t, 2t) = \frac{t^4 \cdot (2t)^3}{t^6 + (2t)^6} = \frac{8t^7}{t^6 + 64t^6} = \frac{8t}{65} \)
Then, \(\frac{f(t,2t)-f(0,0)}{t} = \frac{\frac{8t}{65} - 0}{t} = \frac{8}{65}\).
From the above analysis, the correct options are: