Left-Hand Limit (LHL) at \( x = \frac{\pi}{2} \)
The left-hand limit is:
\[ \lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\tan \frac{8x}{\tan 7x}}. \]
As \( x \to \frac{\pi}{2}^- \), both \( \tan 8x \to \infty \) and \( \tan 7x \to \infty \), so:
\[ \frac{\tan 8x}{\tan 7x} \to \frac{8}{7}. \]
Thus:
\[ \lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\frac{\tan 8x}{\tan 7x}} = \left( \frac{8}{7} \right)^0 = 1. \]
Right-Hand Limit (RHL) at \( x = \frac{\pi}{2} \)
The right-hand limit is:
\[ \lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}}. \]
As \( x \to \frac{\pi}{2}^+ \), \( \cot x \to 0 \) and \( \tan \lvert x \rvert \to \infty \). This simplifies to:
\[ \lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}} = \frac{b}{e^a}. \]
Continuity Condition For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \):
\[ LHL = f\left( \frac{\pi}{2} \right) = RHL. \]
Substitute:
\[ 1 = a - 8 = \frac{b}{e^a}. \]
From \( a - 8 = 1 \):
\[ a = 9. \]
Substitute \( a = 9 \) into \( \frac{b}{e^a} = e^{\frac{b}{a}} \), giving:
\[ e^{\frac{b}{9}} = 1 \implies \frac{b}{9} = 0 \implies b = 0. \]
Final Calculation
\[ a^2 + b^2 = 9^2 + 0^2 = 81. \]
Final Answer is : 81.
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32