Left-Hand Limit (LHL) at \( x = \frac{\pi}{2} \)
The left-hand limit is:
\[ \lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\tan \frac{8x}{\tan 7x}}. \]
As \( x \to \frac{\pi}{2}^- \), both \( \tan 8x \to \infty \) and \( \tan 7x \to \infty \), so:
\[ \frac{\tan 8x}{\tan 7x} \to \frac{8}{7}. \]
Thus:
\[ \lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\frac{\tan 8x}{\tan 7x}} = \left( \frac{8}{7} \right)^0 = 1. \]
Right-Hand Limit (RHL) at \( x = \frac{\pi}{2} \)
The right-hand limit is:
\[ \lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}}. \]
As \( x \to \frac{\pi}{2}^+ \), \( \cot x \to 0 \) and \( \tan \lvert x \rvert \to \infty \). This simplifies to:
\[ \lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}} = \frac{b}{e^a}. \]
Continuity Condition For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \):
\[ LHL = f\left( \frac{\pi}{2} \right) = RHL. \]
Substitute:
\[ 1 = a - 8 = \frac{b}{e^a}. \]
From \( a - 8 = 1 \):
\[ a = 9. \]
Substitute \( a = 9 \) into \( \frac{b}{e^a} = e^{\frac{b}{a}} \), giving:
\[ e^{\frac{b}{9}} = 1 \implies \frac{b}{9} = 0 \implies b = 0. \]
Final Calculation
\[ a^2 + b^2 = 9^2 + 0^2 = 81. \]
Final Answer is : 81.
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: