The function f is discontinuous exactly at the point in (0,1)
There is exactly one point in (0,1) at which the function f is continuous but not differentiable
the function f is not differentiable at more than three points in (0,1)
The minimum value of the function f is\(-\frac{1}{512}\)
To analyze the function \( f(x) = [4x](x-\frac{1}{4})^2(x-\frac{1}{2}) \), where \( [x] \) denotes the greatest integer less than or equal to \( x \), follow these steps:
1. Check where \( [4x] \) may change value within \( (0,1) \). Notice \( [4x]=n \) where \( n \) is an integer, specifically \( n \in \{1, 2, 3\} \) because \( 0 < 4x < 4 \).
2. Points where changes occur are \( x = \frac{1}{4}, \frac{1}{2}, \frac{3}{4} \). Evaluate continuity at these points:
3. Therefore, \( f \) is not continuous at these three points.
1. The problem asks to find exactly one point where the function is continuous but not differentiable:
Thus, function \( f \) is continuous at this domain but not differentiable.
Solve for \( x \):
\( \log_{10}(x^2) = 2 \).
Let \( K \) be an algebraically closed field containing a finite field \( F \). Let \( L \) be the subfield of \( K \) consisting of elements of \( K \) that are algebraic over \( F \).
Consider the following statements:
S1: \( L \) is algebraically closed.
S2: \( L \) is infinite.
Then, which one of the following is correct?
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.