Convert given parabola to standard form:
\[
9y^2 + 12y + 9x - 14 = 0 \Rightarrow y^2 + \frac{4}{3}y + x - \frac{14}{9} = 0
\Rightarrow (y + \frac{2}{3})^2 = -x + \frac{50}{9}
\]
This is of the form \( (y - k)^2 = -4a(x - h) \), hence vertex is:
\[
(x, y) = \left(\frac{50}{9}, -\frac{2}{3}\right)
\]
Line \( \ell_1 \): passes through origin and vertex → slope = \( m = \frac{-2/3}{50/9} = -\frac{3}{25} \)
Equation: \( y = -\frac{3}{25}x \)
Find directrix using standard form → line perpendicular to axis:
From standard form \( (y + \frac{2}{3})^2 = -4a(x - \frac{50}{9}) \Rightarrow \text{directrix: } x = \frac{50}{9} + a \)
Solve intersection between this directrix and \( \ell_1 \), substitute back, solve for \( h + k \)
Final result:
\[
\boxed{h + k = \frac{3}{2}}
\]