Given: \( d + 2 = D \Rightarrow r + 1 = R \)
In the figure, the small circle has radius \( r \), so:
Now, using the right triangle \( \triangle OTB \):
\[ OT^2 + TB^2 = OB^2 \]
Substitute values:
\[ r^2 + 3^2 = (r + 1)^2 \]
\[ r^2 + 9 = r^2 + 2r + 1 \]
Cancel \( r^2 \) on both sides:
\[ 9 = 2r + 1 \Rightarrow 2r = 8 \Rightarrow r = 4 \]
So, \( R = r + 1 = 5 \)
Then, diameter of the larger circle is: \[ D = 2R = 2 \times 5 = \mathbf{10 \, \text{cm}} \]
Correct option: (A) 10 cm


For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: