Given:
\[ M=\begin{bmatrix}K&1&1\\[4pt]1&K&1\\[4pt]1&1&K\end{bmatrix},\qquad A:=10I_3-M. \]
Step 1 β rewrite \(M\) using the all-ones matrix \(J\)
Let \(J\) be the \(3\times3\) matrix of all ones. Then \[ M=(K-1)I_3+J, \] so \[ A=10I_3-M=10I_3-(K-1)I_3-J=(11-K)I_3-J. \] Put \(a:=11-K\). Then \(A=aI_3-J\).
Step 2 β eigenvalues of \(J\)
For \(J\) (size \(3\)), the eigenvalues are: \[ \lambda_J=3\ (\text{once, eigenvector }(1,1,1)),\quad 0\ (\text{multiplicity }2). \]
Step 3 β eigenvalues of \(A=aI_3-J\)
Eigenvalues of \(A\) are \(a-3\) (once) and \(a\) (twice). The rank of \(A\) equals the number of nonzero eigenvalues. We want \(\operatorname{rank}(A)=2\). That happens exactly when one eigenvalue is zero and the other two are nonzero. This requires \(a-3=0\) while \(a\neq0\). So \(a=3\).
Step 4 β find \(K\)
\[ a=11-K=3 \quad\Rightarrow\quad K=11-3=8. \]
Answer: \(\boxed{\,K=8\,}\)
If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |