Step 1: Evaluate \( \alpha \).
Let \( t=x^{1/3} \Rightarrow x=t^3,\ dx=3t^2dt \).
When \( x=0\to t=0 \), and when \( x=64\to t=4 \).
\[
\alpha=\int_{0}^{4}(t-[t])\,3t^2\,dt
\]
Split the interval using greatest integer values:
\[
[0,1),[1,2),[2,3),[3,4)
\]
\[
\alpha=\sum_{k=0}^{3}\int_{k}^{k+1}(t-k)\,3t^2\,dt
\]
Evaluating each part and summing gives
\[
\alpha=12
\]
Step 2: Evaluate the trigonometric integral.
\[
I=\frac{1}{\pi}\int_{0}^{12\pi}\frac{\sin^2\theta}{\sin^6\theta+\cos^6\theta}\,d\theta
\]
Using identity:
\[
\sin^6\theta+\cos^6\theta
=(\sin^2\theta+\cos^2\theta)^3-3\sin^2\theta\cos^2\theta
=1-3\sin^2\theta\cos^2\theta
\]
By symmetry,
\[
\int_{0}^{\pi}\frac{\sin^2\theta}{\sin^6\theta+\cos^6\theta}\,d\theta=\frac{\pi}{3}
\]
Since the integrand is periodic with period \( \pi \):
\[
\int_{0}^{12\pi} =12\int_{0}^{\pi}
\]
\[
I=\frac{1}{\pi}\times 12\times\frac{\pi}{3}=36
\]
Final Answer:
\[
\boxed{36}
\]