Let $(2\alpha,\alpha)$ be the largest interval in which the function \[ f(t)=\frac{|t+1|}{t^2},\; t<0 \] is strictly decreasing. Then the local maximum value of the function \[ g(x)=2\log_e(x-2)+\alpha x^2+4x-\alpha,\; x>2 \] is
Step 1: Simplifying $f(t)$.
For $t<0$,
|t+1|=-(t+1), & t<-1 t+1, & -1
Step 2: Checking monotonicity.
Differentiate in both intervals.
For $t<-1$: \[ f'(t)=\frac{t+2}{t^3} \Rightarrow f'(t)<0 \text{ for } (-2,-1) \] For -10 Thus, the largest decreasing interval is \[ (2\alpha,\alpha)=(-2,-1) \Rightarrow \alpha=-1 \]
Step 3: Maximizing $g(x)$.
Substitute $\alpha=-1$: \[ g(x)=2\log(x-2)-x^2+4x+1 \] Differentiate: \[ g'(x)=\frac{2}{x-2}-2x+4 \] Set $g'(x)=0$: \[ \frac{2}{x-2}=2x-4 \Rightarrow x=3 \] Step 4: Local maximum value.
\[ g(3)=2\log 1-9+12+1=2 \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)