We are given the equations of two curves:
To find the points of intersection, solve \(y = x\) and \(y^2 = 8x\):
\[ x^2 = 8x \implies x(x - 8) = 0. \]
Thus, \(x = 0\) or \(x = 8\).
Substituting these values into \(y = x\), we get:
Thus, the points of intersection are \(O(0, 0)\) and \(A(8, 8)\).
The vertical line \(x = 2\) intersects the parabola \(y^2 = 8x\):
\[ y^2 = 16 \implies y = \pm 4. \]
This gives the points \(Q(2, 4)\) and \(R(2, -4)\).
The shaded region lies between the parabola \(y^2 = 8x\) and the line \(y = x\), from \(x = 2\) to \(x = 8\). The area is given by:
\[ \text{Area} = \int_{2}^{8} \left(\sqrt{8x} - x\right) dx. \]
First, split the integral:
\[ \text{Area} = \int_{2}^{8} \sqrt{8x} dx - \int_{2}^{8} x dx. \]
Using substitution, let \(u = 8 - x\), so \(du = -dx\). The limits change as follows:
The integral becomes:
\[ \int_{2}^{8} \sqrt{8x} dx = 2\sqrt{2} \int_{6}^{0} u^{1/2} (-du). \]
Reversing the limits to eliminate the negative sign:
\[ \int_{2}^{8} \sqrt{8x} dx = 2\sqrt{2} \int_{0}^{6} u^{1/2} du. \]
Now integrate \(u^{1/2}\):
\[ \int u^{1/2} du = \frac{2}{3} u^{3/2}. \]
Apply the limits of integration:
\[ \int_{2}^{8} \sqrt{8x} dx = 2\sqrt{2} \cdot \frac{2}{3} \left[6^{3/2} - 0\right]. \]
Compute \(6^{3/2}\):
\[ 6^{3/2} = \sqrt{6^3} = \sqrt{216} = 6\sqrt{6}. \]
Thus:
\[ \int_{2}^{8} \sqrt{8x} dx = \frac{4\sqrt{2}}{3} \cdot 6\sqrt{6} = 4\sqrt{2} \cdot 2\sqrt{6} = 8\sqrt{12}. \]
The integral is straightforward:
\[ \int x dx = \frac{x^2}{2}. \]
Apply the limits of integration:
\[ \int_{2}^{8} x dx = \frac{8^2}{2} - \frac{2^2}{2} = \frac{64}{2} - \frac{4}{2} = 32 - 2 = 30. \]
The total area is:
\[ \text{Area} = \int_{2}^{8} \sqrt{8x} dx - \int_{2}^{8} x dx. \]
Substitute the results:
\[ \text{Area} = 8\sqrt{12} - 30. \]
Simplify further:
\[ \text{Area} = 22/3 \]