Let\( Δ,▽∈{∧,∨} \)
be such that \(p▽q⇒((pΔq)▽r) \)
is a tautology. Then \((p▽q)Δr \)
is logically equivalent to:
\((pΔr)∨q\)
\((pΔr)∧q\)
\((p∧r)Δq\)
\((p▽r)∧q\)
The correct answer is (A) : \((pΔr)∨q\)
Case-I If ∇ is same as ∧
Then (p∧q) ⇒ ((pΔq) ∧r) is equivalent to ~ (p∧q) ∨ ((pΔq) ∧r) is equivalent to (~ (p∧q) ∨ (pΔq))∧ (~ (p∧q) ∨r)
Which cannot be a tautology
For both Δ (i.e.∨ or ∧)
Case-II If ∇ is same as ∨
Then (p∨q) ⇒ ((pΔq) ∨r) is equivalent to
~(p∨q) ∨ (pΔq) ∨r which can be a tautology if Δ is also same as ∨.
Hence both Δ and ∇ are same as ∨.
Now (p∇q) Δr is equivalent to (p∨q∨r).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: