Given: \[ a_n = S_n - S_{n-1} = n^2 + 3n. \]
Simplify the expression: Using the formula for \(a_n\): \[ a_n = \frac{(n+1)(n+2) - (n-1)(n+2)}{n(n+1)}. \]
Now, consider: Summing over \(k\) from 1 to 10: \[ \sum_{k=1}^{10} a_k = \sum_{k=1}^{10} \frac{k(k+1)(k+2)}{4}. \]
Expand and calculate: Substitute \(k(k+1)(k+2)\) and simplify further using telescoping: \[ \sum_{k=1}^{10} \frac{(k(k+1)(k+2)(k+3) - (k-1)k(k+1)(k+2))}{4}. \]
After calculation: The final result is: \[ \sum_{k=1}^{10} a_k = \frac{7}{4} \cdot 10 \cdot 11 \cdot 12 \cdot 13 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13. \]
Final Answer: The value of \(m\) is 6.
If aa is the greatest term in the sequence \(a_n=\frac{n^3}{n^4+147},n=1,2,3,...,\) then a is equal to______________.
The sum\(\displaystyle\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}\) is equal to:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32