Given: \[ a_n = S_n - S_{n-1} = n^2 + 3n. \]
Simplify the expression: Using the formula for \(a_n\): \[ a_n = \frac{(n+1)(n+2) - (n-1)(n+2)}{n(n+1)}. \]
Now, consider: Summing over \(k\) from 1 to 10: \[ \sum_{k=1}^{10} a_k = \sum_{k=1}^{10} \frac{k(k+1)(k+2)}{4}. \]
Expand and calculate: Substitute \(k(k+1)(k+2)\) and simplify further using telescoping: \[ \sum_{k=1}^{10} \frac{(k(k+1)(k+2)(k+3) - (k-1)k(k+1)(k+2))}{4}. \]
After calculation: The final result is: \[ \sum_{k=1}^{10} a_k = \frac{7}{4} \cdot 10 \cdot 11 \cdot 12 \cdot 13 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13. \]
Final Answer: The value of \(m\) is 6.
If aa is the greatest term in the sequence \(a_n=\frac{n^3}{n^4+147},n=1,2,3,...,\) then a is equal to______________.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: