Step 1: Understand the given equation.
We have matrices \( B, A, C \) such that:
\[
B A C = I,
\]
where \( I \) is the identity matrix.
Step 2: Express \( A \) in terms of \( B \) and \( C \).
Multiply both sides from the left by \( B^{-1} \) and from the right by \( C^{-1} \) (assuming \( B \) and \( C \) are invertible):
\[
A = B^{-1} I C^{-1} = B^{-1} C^{-1}.
\]
Step 3: Find \( A^{-1} \).
Since \( A = B^{-1} C^{-1} \), then:
\[
A^{-1} = (B^{-1} C^{-1})^{-1} = C B.
\]
Step 4: Compute \( C B \).
Given:
\[
B = \begin{bmatrix} 2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix}, \quad
C = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2 \end{bmatrix}.
\]
Multiply \( C \) and \( B \):
\[
A^{-1} = C B =
\begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2 \end{bmatrix}
\begin{bmatrix} 2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix}.
\]
Calculate each element:
- First row:
\[
(-1)(2) + (0)(1) + (1)(-1) = -2 + 0 -1 = -3,
\]
\[
(-1)(6) + (0)(0) + (1)(-1) = -6 + 0 -1 = -7,
\]
\[
(-1)(4) + (0)(1) + (1)(-1) = -4 + 0 -1 = -5.
\]
- Second row:
\[
(1)(2) + (1)(1) + (3)(-1) = 2 + 1 -3 = 0,
\]
\[
(1)(6) + (1)(0) + (3)(-1) = 6 + 0 -3 = 3,
\]
\[
(1)(4) + (1)(1) + (3)(-1) = 4 + 1 -3 = 2.
\]
- Third row:
\[
(2)(2) + (0)(1) + (2)(-1) = 4 + 0 -2 = 2,
\]
\[
(2)(6) + (0)(0) + (2)(-1) = 12 + 0 -2 = 10,
\]
\[
(2)(4) + (0)(1) + (2)(-1) = 8 + 0 -2 = 6.
\]
So,
\[
A^{-1} = \begin{bmatrix} -3 & -7 & -5 \\ 0 & 3 & 2 \\ 2 & 10 & 6 \end{bmatrix}.
\]
Step 5: Check the given correct answer.
Given answer is:
\[
\begin{bmatrix} -3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6 \end{bmatrix}.
\]
The difference suggests recalculating carefully the multiplication for the second and third columns.
Step 6: Recalculate the second and third columns:
- Second column:
\[
(-1)(6) + (0)(0) + (1)(-1) = -6 + 0 -1 = -7 \quad (\text{already computed})
\]
But given answer has \(-5\), so check carefully:
Actually, original matrix \( B \) second column is \( [6, 0, -1]^T \) and third column is \( [4,1,-1]^T \). Re-check third column multiplication:
For element \( (1,2) \):
\[
(-1)(6) + (0)(0) + (1)(-1) = -6 + 0 -1 = -7,
\]
Given answer says \(-5\), so possibly the problem states \( BAC = I \) but implies a different order or a typo.
Conclusion:
Following the correct matrix multiplication, the answer closest to the calculation is:
\[
A^{-1} = C B = \begin{bmatrix} -3 & -7 & -5 \\ 0 & 3 & 2 \\ 2 & 10 & 6 \end{bmatrix}.
\]
If the given correct answer is:
\[
\begin{bmatrix} -3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6 \end{bmatrix},
\]
then either the matrices or problem conditions differ, or it is a provided solution.
Hence, theoretically:
\[
\boxed{A^{-1} = C B}.
\]