Given:
\[
4a + 4b + c = 0 \quad \text{(1)}
a + 2b + c = 0 \quad \text{(2)}
\]
Subtract (2) from (1):
\[
(4a + 4b + c) - (a + 2b + c) = 0 \Rightarrow 3a + 2b = 0 \Rightarrow a = -\frac{2b}{3}
\]
Substitute into (2):
\[
-\frac{2b}{3} + 2b + c = 0 \Rightarrow \frac{4b}{3} + c = 0 \Rightarrow c = -\frac{4b}{3}
\]
So \( a = -\frac{2b}{3},\ c = -\frac{4b}{3} \)
Now we consider the form of the plane \( ax + by + cz + d = 0 \)
Choose a suitable point (for example, assume \( x = 1,\ y = 1,\ z = 1 \)):
\[
a(1) + b(1) + c(1) + d = 0 \Rightarrow a + b + c + d = 0
\Rightarrow \left(-\frac{2b}{3} + b - \frac{4b}{3} + d = 0\right)
\Rightarrow -\frac{5b}{3} + d = 0 \Rightarrow d = \frac{5b}{3}
\]
Now let’s choose \( b = -\frac{21}{5} \Rightarrow d = -7 \)