Step 1: Define the random variable for the service time.
Let \( X \) denote the service time. Since the customer chooses \( P_1 \) or \( P_2 \) with equal probability, the probability density function of \( X \) is the average of the PDFs for \( P_1 \) and \( P_2 \):
\[
f_X(x) = \frac{1}{2} f_1(x) + \frac{1}{2} f_2(x).
\]
Substitute the given expressions for \( f_1(x) \) and \( f_2(x) \):
\[
f_X(x) = \frac{1}{2} \lambda e^{-\lambda x} + \frac{1}{2} \lambda^2 x e^{-\lambda x}.
\]
Step 2: Compute the probability that the service time is more than one minute.
We are given that the probability that the service time exceeds one minute is \( 2e^{-2} \), i.e.,
\[
\Pr(X>1) = 2e^{-2}.
\]
To compute this probability, we integrate the PDF from 1 to infinity:
\[
\Pr(X>1) = \int_1^\infty f_X(x) \, dx = \int_1^\infty \left( \frac{1}{2} \lambda e^{-\lambda x} + \frac{1}{2} \lambda^2 x e^{-\lambda x} \right) \, dx.
\]
Now, split the integral:
\[
\Pr(X>1) = \frac{1}{2} \int_1^\infty \lambda e^{-\lambda x} \, dx + \frac{1}{2} \int_1^\infty \lambda^2 x e^{-\lambda x} \, dx.
\]
The first integral is straightforward:
\[
\int_1^\infty \lambda e^{-\lambda x} \, dx = e^{-\lambda}.
\]
For the second integral, use integration by parts or recognize it as a known form:
\[
\int_1^\infty \lambda^2 x e^{-\lambda x} \, dx = \frac{\lambda^2}{\lambda^2} = 1.
\]
Thus:
\[
\Pr(X>1) = \frac{1}{2} \left( e^{-\lambda} + 1 \right).
\]
We are given that this equals \( 2e^{-2} \), so:
\[
\frac{1}{2} \left( e^{-\lambda} + 1 \right) = 2e^{-2}.
\]
Solving for \( \lambda \), we get:
\[
e^{-\lambda} + 1 = 4e^{-2} \quad \Rightarrow \quad e^{-\lambda} = 4e^{-2} - 1.
\]
Now solve for \( \lambda \):
\[
e^{-\lambda} = e^{-2} \quad \Rightarrow \quad \lambda = 2.
\]
Thus, the value of \( \lambda \) is \( \boxed{2} \).