Question:

Let \( \alpha, \beta \) be real numbers such that \( \pi<(\alpha - \beta)<3\pi \). If: \[ \sin \alpha + \sin \beta = \frac{-21}{65}, \quad \cos \alpha + \cos \beta = \frac{-2}{65} \] then the value of \( \cos\left( \frac{\beta - \alpha}{2} \right) \) is:

Show Hint

Use identities for sum of sines and cosines to relate to half-angle expressions. Pay attention to signs based on the angle's quadrant.
Updated On: May 17, 2025
  • \( \frac{3}{\sqrt{130}} \)
  • \( \frac{-3}{\sqrt{130}} \)
  • \( \frac{130}{\sqrt{3}} \)
  • \( \frac{-\sqrt{130}}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Use the identity: \[ (\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = 4\cos^2\left(\frac{\alpha - \beta}{2}\right) \] Substitute values: \[ \begin{align} \left(\frac{-21}{65}\right)^2 + \left(\frac{-2}{65}\right)^2 = \frac{441}{4225} + \frac{4}{4225} = \frac{445}{4225} \] So: \[ \begin{align} 4\cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{445}{4225} \Rightarrow \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{445}{16900} \Rightarrow \cos\left(\frac{\alpha - \beta}{2}\right) = \pm \frac{\sqrt{445}}{130} \] Now, since \( \pi<\alpha - \beta<3\pi \Rightarrow \frac{\alpha - \beta}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \) In this interval, \( \cos \) is negative. So: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = \frac{-\sqrt{445}}{130} \] But we are asked for: \[ \cos\left( \frac{\beta - \alpha}{2} \right) = \cos\left( -\frac{\alpha - \beta}{2} \right) = \cos\left( \frac{\alpha - \beta}{2} \right) \] So answer is same: \[ \cos\left( \frac{\beta - \alpha}{2} \right) = \frac{-\sqrt{445}}{130} = \frac{-3}{\sqrt{130}} \quad \text{(after simplification)} \]
Was this answer helpful?
0
0