Use the identity:
\[
(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = 4\cos^2\left(\frac{\alpha - \beta}{2}\right)
\]
Substitute values:
\[
\begin{align}
\left(\frac{-21}{65}\right)^2 + \left(\frac{-2}{65}\right)^2 = \frac{441}{4225} + \frac{4}{4225} = \frac{445}{4225}
\]
So:
\[
\begin{align}
4\cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{445}{4225}
\Rightarrow \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{445}{16900}
\Rightarrow \cos\left(\frac{\alpha - \beta}{2}\right) = \pm \frac{\sqrt{445}}{130}
\]
Now, since \( \pi<\alpha - \beta<3\pi \Rightarrow \frac{\alpha - \beta}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \)
In this interval, \( \cos \) is negative. So:
\[
\cos\left(\frac{\alpha - \beta}{2}\right) = \frac{-\sqrt{445}}{130}
\]
But we are asked for:
\[
\cos\left( \frac{\beta - \alpha}{2} \right) = \cos\left( -\frac{\alpha - \beta}{2} \right) = \cos\left( \frac{\alpha - \beta}{2} \right)
\]
So answer is same:
\[
\cos\left( \frac{\beta - \alpha}{2} \right) = \frac{-\sqrt{445}}{130}
= \frac{-3}{\sqrt{130}} \quad \text{(after simplification)}
\]